NGNP Systems Analysis

Hans Gougar

August 10, 2011

- The NGNP Project is part of the Advanced Reactor Concepts development effort
- NGNP specifically seeks to expand the use of nuclear energy beyond electricity generation (high temperature process heat and hydrogen for industrial applications)
- The NGNP R&D Program is engaged in the qualification of high temperature reactor fuel, materials (graphite and alloys), and design and analysis methods
- The VHTR Technology Development Office is the R&D arm of the NGNP Project and is based at the INL.
 Team members include: ORNL, ANL, and university partners.

High Temperature Gas-Cooled Reactors (HTGR or VHTR)

- ◆ The VHTR is a helium-cooled, graphite moderated reactor with a core outlet temperature between 750 and 850°C with a long-term goal of achieving an outlet temperature of 950°C.
- ◆ The reactor is well suited for the cogeneration of process heat and electricity and for the production of hydrogen from water for industrial applications in the chemical and petrochemical sectors.

Workscope

- Technical Workscope in FY12
 - Fuels Qualification
 - Material Qualification (graphite, SiC, high temperature alloys)
 - Design and analysis methods
 - Energy transport, conversion, and application
- Proposals being sought in the areas of
 - Computational Methods and Experimental Validation (NGNP-1)
 - Heat Transport, Energy Conversion, Hydrogen Production, and Nuclear Heat Applications (NGNP-2)
 - No fuels and materials proposals are being solicited in FY12 (awaiting further progress on existing projects)

NGNP System Analysis

The development of of approaches to coupling gas-cooled reactors with the wide variety of process heat applications (co-generation, coal-to-liquids, chemical feedstocks).

Hydrogen generation using high temperature steam electrolysis

Scope

- Hydrogen generation using high temperature steam electrolysis
- Dynamic simulation of reactor-driven process heat plants focusing upon system feedback, load matching and rejection and the influence of multiple modules
- Economic analysis and optimization of VHTR-process heat plant coupling
- Analysis of alternative coolants

FY12 Solicitation Emphasis

- Advanced in hydrogen generation using high temperature steam electrolysis
- Dynamic simulation and control of multiple module, reactordriven process heat plants
- Advanced instrumentation and control methods for combined cycle, multiple product systems (load balancing of simultaneous electricity, hydrogen, and process heat

production)

Hydrogen Production using HTSE

- Proposals are sought related to the:
 - development and demonstration of advanced material sets for solid oxide electrolysis cells and stacks that maximize long-term performance
 - modeling and identification of degradation mechanisms with experimental validation
 - development and application of advanced diagnostic techniques for real-time in-situ measurements of cell and stack performance phenomena
 - development and application of advanced diagnostic techniques for post-test examination, with a focus on degradation mechanisms

Nuclear I&C

Refer to Nuclear Instrumentation & Control Breakout

Focus on control of multiple modules and multiple power

conversion systems

Summary of NGNP Solicitation

- Hydrogen production using high temperature steamassisted electrolysis
- Instrumentation and control of multiple module/multiple PCS plants

Hans.Gougar@inl.gov